

И. Панова, гл. технолог ООО "ВОДАКО"

Содержание

- Введение
- Исходные данные / Техническое задание
- Принципиальная схема очистки
- Биологическая очистка / Расчет
- Биологическая очистка / Схемы

Введение

Сточные воды

Производственные / Хозяйственно-бытовые / Поверхностные Смешанные

Объекты

Предприятия

Коммунальные сооружения

Объем **проектирования**

Раздел ТХ (Технологические решения)

Текстовая часть (ПЗ, расчеты, спецификации оборудования и КИП) Графическая часть (схема, планировочные решения, привязки) Задания смежным разделам (КЖ, КМ, АР, ВК, ОВ, АТХ и т.д.)

Объемы

Концентрации загрязнений

Степень очистки

Дополнительно

Исходные данные / Составление Т3

м³/сут, м³/ч, пиковые нагрузки, режим сброса, перспективы, очередность

Основные показатели

Орг. загрязнения (БПК, ХПК) Взвешенные вещества Соединения азота ($N_{o6щ}$, N_{opr} , NH_4 , NO_2 , NO_3) Фосфор ($P_{o6щ}$, PO_4) Нефтепродукты Жиры СПАВ, тяжелые металлы, соли pH, температура

Специфические

Обусловлены выпускаемой продукцией или особенностями произв. процесса

Точка сброса

Сеть городской канализации
Водоем
Повторное использование

Ограничения по площади

Существующие емкости, здания, сооружения

Предпочтительное исполнение (наземное, заглубленное и т.д.)

Стадии очистки

Механическая

Физико-

Биологическая

Доочистка

Обработка осадка

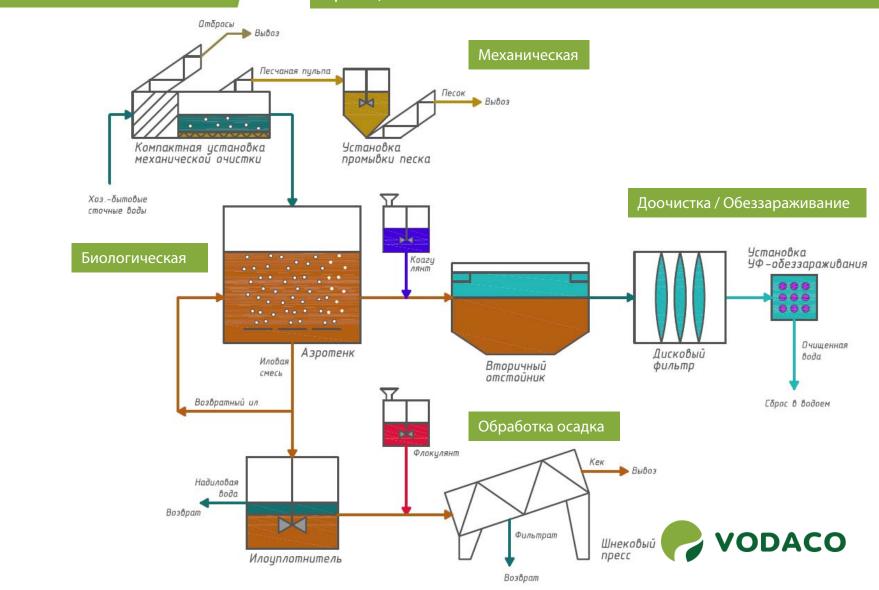
Удаление крупных частиц, посторонних включений, плавающих веществ, песка

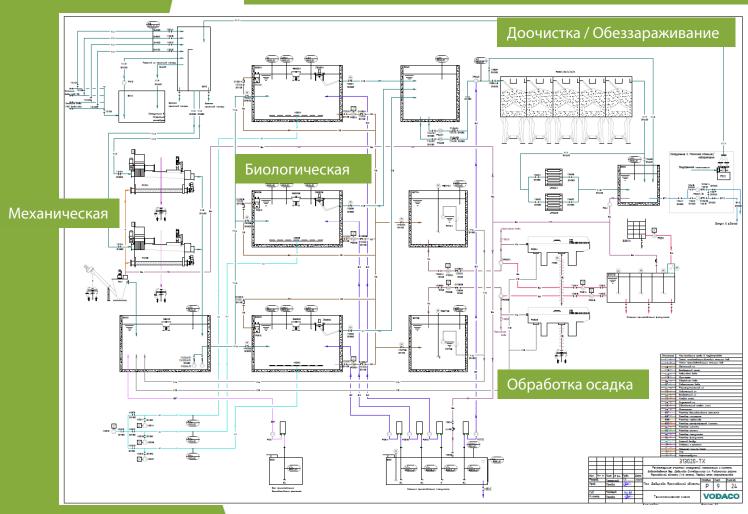
Удаление специфических загрязнений, нефтепродуктов, жира, органических загрязнений и взвешенных веществ

Удаление растворенных орг. загрязнений, соединений азота, фосфора

Удаление остаточных загрязнений

Снижение влажности





Принципиальная схема

Технологическая схема

Биологическая очистка / Расчет

Технологический расчет

Реакционный объем (общий, зоны)

Конфигурация емкостных сооружений

Количество кислорода Количество избыточного ила Степень рециркуляции

Подбор оборудования

Расчетные **инструменты**

Нормативные документы

СНиП 2.04.03-85

СП 32.13330.2012

- Удаление механических включений
- Разложение органических соединений
- Глубокое удаление соединений азота (нитри-денитрификация)
- Удаление фосфора

Биологическая очистка / Расчет

Технологический расчет

Реакционный объем (общий, зоны)

Конфигурация емкостных сооружений

Количество кислорода Количество избыточного ила Степень рециркуляции и т.д.

Подбор оборудования

Расчетные инструменты

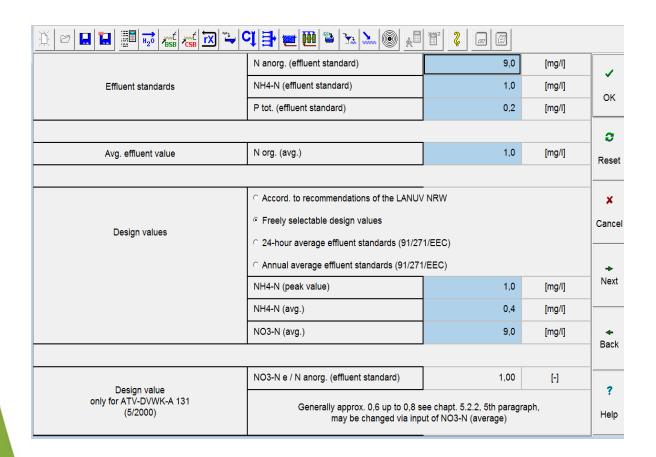
Алгоритмы ATV-DVWK Союз немецких инженеров водного хозяйства

А131 Расчет сооружений биологической очистки

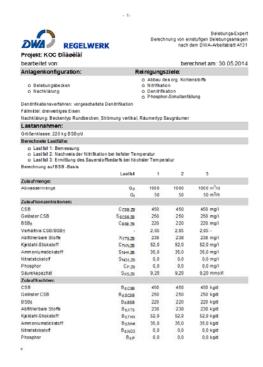
Программные средства статического моделирования и расчета

Биологическая очистка / Расчет

Программные средства статического моделирования и расчета


- Учет возвратных потоков
- Эффективность предварительных стадий
- Нитри-денитрификация (варианты)
- Биолого-реагентное удаление фосфора
- Дозирование внешнего источника углерода
- Вариативный расчет, подбор параметра

Программные средства статического моделирования и расчета


Биологическая очистка / Расчет

Биологическая очистка / Расчет

Программные средства статического моделирования и расчета

- 2-		
Belebungsbecken, Lastfall 1:		
Temperatur im Belebungsbecken	т	12.0 Grad C
Stickstoffbilanz:		
Zulauf, C Tron + S Non	CN	52.0 mg/l
im Schlamm gebunden	XoraNBM	11,0 mg/l
Ammonium im Ablauf	SNH AN	0,4 mg/l
organischer Stick stoff im Ablauf	SpraNAN	1,0 mg/l
nitrifizierter Stickstoff	S _{NO3.N}	39,6 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3-AN}	9,0 mg/l
zu denitrifzierendes Nitrat	SN03.D	30,6 mg/I
erforderliche Den trifikation skapazität	SNO3.p/CB98	0,139 kg/kg
Gewählter Denitrifikationsanteil	V _D /V _{BB}	0.34 -
vorhandene Denitrifikationskapazität	SNO3D/Case	0,135 kg/kg
den krifizierte s Nitrat	SNO3,D	29,7 mg/I
Nitrat im Ablauf (vorhanden)	SN03.AN	9,9 mg/l
Minimal erbrderliche Rückführung	RF	3,40 -
Phosphorelimination:		
Phosphor im Zulauf	Cp.28	0,0 mg/l
Im Schlamm gebunden (normale Aufhahme)	X _{P,DM}	0,0 mg/l
Im Schlamm gebunden (erhöhte Aufhahme)	X _{P,BaP}	0,0 mg/I
Phosphor im Ablauf (vorhanden)	SP04AN	0,0 mg/l
Phosphor im Ablauf (Sollwert)	SPOLAN	0,2 mg/l
gefällter Phosphor	Xp.pat.	0,0 mg/l
Fällmittel: Dreivertiges Eisen		
Fällmittelbedarf	FM	0.0 kgMeld
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TSAB	4,02 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TSAB	3,00 kg/m ³
Schlammalter und Belastungskennwerter		
Erforderliches Schlammalter	erttrs	12,5 d
Erforderliche Schlamm-Masse	ertMTS	3300 kg
Erforderliches Volumen	Vas	932 m ³
Gewähltes Volumen	VBB	1100 m ³
Vorhandenes Schlammater	trs	15,1 d
Vomandenes serobes Schlammalter	TIS.aet	10,0 d
Vorhandener Sicherheitsfaktor	SF	2.18 -
BSBs-Raumbelastung	BRESS	0,20 kg/(m ³ *d)
BSB ₅ -S chlammbe lastung	B _{TS,BSB}	0,07 kg/(kg*d)
Schlammproduidion:		
Schlamm aus Kohlenstoffelimination	0Sec	219 kgd
Schlamm aus Dosierung von ext. C	0.5 dated	0 kgd
Schlamm aus biol P-Elimination	0Samor	0 kg/d
Schlamm aus P-Fallung	ÛS _d ,F	0 kg/d
S chiamm produktion gesamt	USd	219 kg/d
Sauerstoffverbrauch:		

Реакционный объем

Возраст ила

Биологическая очистка / Расчет

$$V_{AT} = \frac{M_{SS,AT}}{SS_{AT}} = \frac{t_{SS, Dim} \cdot SP_d}{SS_{AT}}$$

$$t_{SS, aerob, dim} = SF \cdot 3.4 \cdot 1.103$$
 (15-T) cyt

$$t_{SS,dim} = t_{SS,aerob} \cdot \frac{1}{1 - (V_D/V_{AT})}$$
 cyr

	Цель очистки		< 1200 кг БПК₅/сут		> 6000 кг БПК ₅ /сут		
	T∘C		10	12	10	12	
	Без нитрификации		5		4		
	С денитрификацией		10	8,2	8	6,6	
	$V_D/V_{AT} =$	0,2	12,5	10,3	10,0	8,3	СУТ
	2 7	0,3	14,3	11,7	11,4	9,4	•
		0,4	16,7	13,7	13,3	11,0	
		0,5	20,0	16,4	16,0	13,2	
Аэробная стабилизация		25	;	не рекоме	ндуется		

Реакционный объем

Возраст ила

Биологическая очистка / Расчет

$$V_{AT} = \frac{M_{SS,AT}}{SS_{AT}} = \frac{t_{SS, Dim} \cdot SP_d}{SS_{AT}}$$

$$t_{SS, aerob, dim} = SF \cdot 3.4 \cdot 1.103$$
 (15-T)

$$t_{SS,dim} = t_{SS,aerob} \cdot \frac{1}{1 - (V_D/V_{AT})}$$
 cyt

	$S_{NO3,D}/C_{BOD,IAT}$				
V_D/V_{AT}	пре- денитрификация в и	симультанная и периодическая			
	сравнимые процессы	денитрификация			
0,2	0,11	0,06			
0,3	0,3	0,09			
0,4	0,4	0,12			
0,5	0,5	0,15			

$$S_{NO3,D} = C_{N,IAT} - S_{orgN,EST} - S_{NH4,EST} - S_{NO3,EST} - X_{orgN,BM}$$
 Mr/л

Биологическая очистка / Расчет

Реакционный объем

Прирост ила

$$V_{AT} = \frac{M_{SS,AT}}{SS_{AT}} = \frac{t_{SS, Dim}}{SS_{AT}} SP_d$$

$$M^3$$

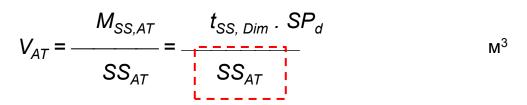
$$SP_{d,C} = B_{d,BOD} \cdot (0.75 + 0.6 \cdot \frac{X_{SS,IAT}}{C_{BOD,IAT}} \quad (1-0.2) \cdot 0.17 \cdot 0.75 \ t_{SS} \cdot F_{T}$$

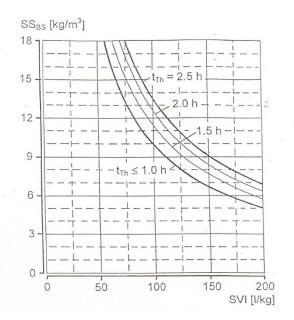
$$+0.17 \cdot t_{SS} \cdot F_{T}$$

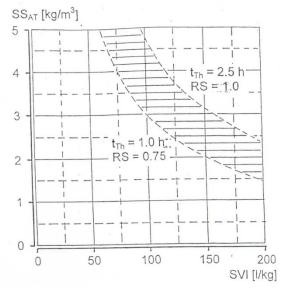
$$\kappa \Gamma/\text{CyT}$$

$$F_T = 1.072^{(T-15)}$$

кгСВ/кгБПК₅

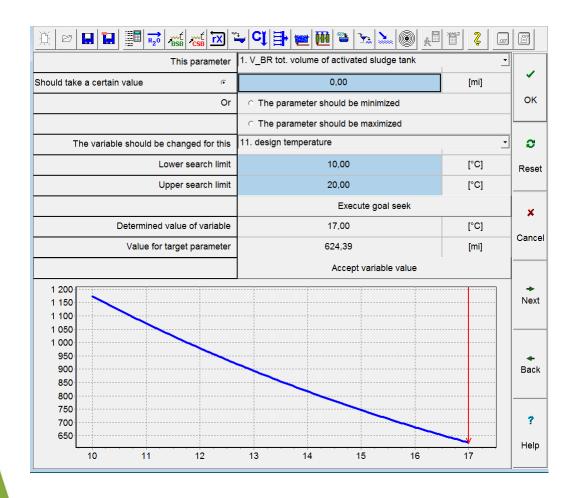

$X_{SS,IAT}/C_{BOD,IAT}$	Возраст ила, сут					
	4	8	10	15	20	25
0,4	0,79	0,69	0,65	0,59	0,56	0,53
0,6	0,91	0,81	0,77	0,71	0,68	0,65
0,8	1,03	0,93	0,89	0,83	0,80	0,77
1,0	1,15	1,05	1,01	0,95	0,92	0,89
1,2	1,27	1,17	1,13	1,07	1,04	1,01




Биологическая очистка / Расчет

Реакционный объем

Доза ила


$$SS_{AT} = \frac{RS \cdot SS_{RS}}{1 + RS}$$
 KΓ/M³

 $SS_{RS} \sim$ от 0.5 до 0.7 \cdot SS_{BS}

Зависимость реакционного объема от температуры

Биологическая очистка / Расчет

Количество кислорода

Часовой расход с учетом пиковых нагрузок

Биологическая очистка / Расчет

$$OV_{d,C} = B_{d,BOD} \cdot (0.56 + \frac{0.15 \cdot t_{SS} \cdot F_T}{1 + 0.17 \cdot t_{SS} \cdot F_T})$$

кг O_2 /сут

 $kгO_2/kгБПК_5$

T°C	Возраст ила, сут					
	4	8	10	15	20	25
10	0,85	0,99	1,04	1,13	1,18	1,22
12	0,87	1,02	1,07	1,15	1,21	1,24
15	0,92	1,07	1,12	1,19	1,24	1,27
18	0,96	1,11	1,16	1,23	1,27	1,30
20	0,99	1,14	1,18	1,25	1,29	1,32

$$OV_{d,N} = Q_d \cdot 4.3 \cdot (S_{NO3,D} - S_{NO3,IAT} + S_{NO3,EST})/1000$$

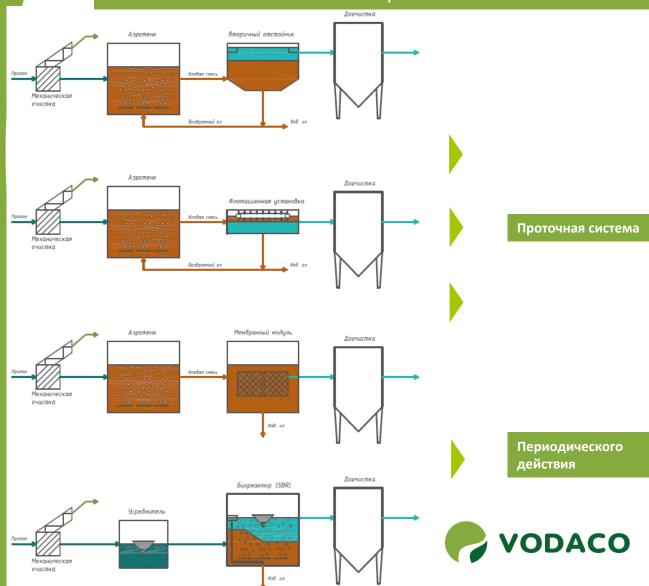
кг O₂/сут

$$OV_{d,D} = Q_d \cdot 2.9 \cdot S_{NO3,D} / 1000$$

кг О₂/сут

$$OV_h = \frac{f_C \cdot (OU_{d,C} - OU_{d,D}) + f_N \cdot OU_{d,I}}{24}$$

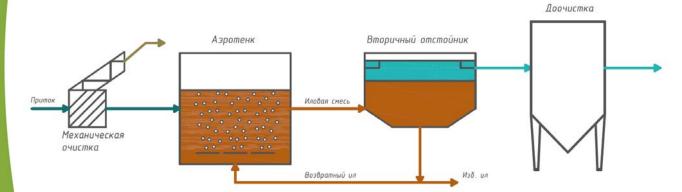
кгО₂/ч


Альфа-фактор!

$$reg_{a}^{C_{S}} = \frac{C_{S}}{C_{S} - C_{X}} \cdot OV_{h}$$
 $reg_{a}^{C_{S}} = \frac{C_{S}}{C_{S} - C_{X}} \cdot OV_{h}$

Биологическая очистка / Выбор схемы

Разделение иловой смеси



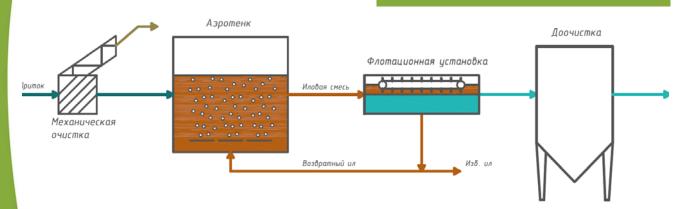
Биологическая очистка / Выбор схемы

Аэротенк – вторичный отстойник

Проточная система

от 1 000 до 500 000 м³/сут

- Классическая технология
- Широкое распространение
- Без ограничений по максимальной производительности



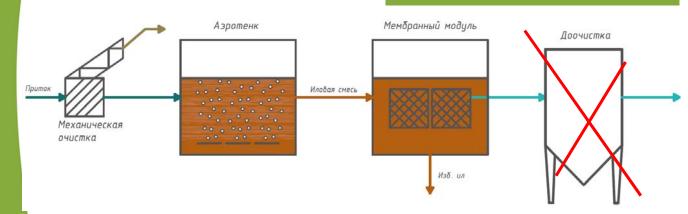
Биологическая очистка / Выбор схемы

Разделение ила и воды флотацией

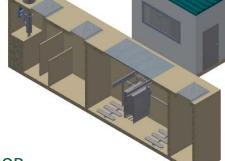
Проточная система

от 200 до 10 000 м³/сут

- Повышенная доза ила до 5-6 г/л
- Оптимизация существующих сооружений
- Повышенная удельная поверхностная нагрузка
- Размещение внутри здания
- Избыточный ил 3% СВ не требует сгущения



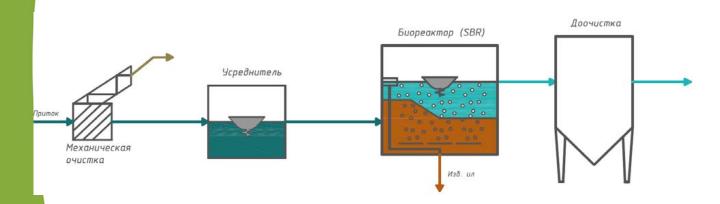
Биологическая очистка / Выбор схемы


Мембранное разделение

Проточная система

от 25 до 10 000 м³/сут

- Доза ила до 12 г/л
- Не требует доочистки
- Не требует возврата ила
- Компактное решение для небольших объемов
- Оптимизация существующих сооружений



Биологическая очистка / Выбор схемы

SBR

Периодического действия от 100 до 10 000 м³/сут

- Разделение ила и воды в объеме биореактора
- Возможность оперативного изменения продолжительности фаз
- Идеальные условия для седиментации
- Принцип модульного расширения

Спасибо за внимание!